全国统一服务热线:400-698-7080

资讯中心

站内搜索

新闻 产品

你的位置:首页 > 资讯中心 > 平调知识

天线知识

发布时间:2011-01-10 03:04:24 点击数:4493

第一讲 天线的基础知识
发射电磁波所用的导线,在无线电通信中一般叫做“发射天线”。高频电磁波在空中传播,如遇着导体,就会发生感应作用,在导体内产生高频电流,使我们可以用导线接收来自远处的无线电信号。接收电磁波所用的导线,一般叫做“接收天线”。任何导线都可以作为发信天线和接收天线。高频电子设备中每一段导线都可能向外发射电磁波,灵敏的收信机中每一段导线都可能拾取空中的各种电磁波所以需要采取种种的屏蔽措施!以免不应有的“天线”接收到干扰信号!
不同形状、尺寸的导线在发射和接收某一频率的无线电信号时,效率相差很多,因此要取得理想的通信效果,必须采用适当的天线才行!天线影响无线电通信效果的主要原因有极化方向、方向特性、阻抗匹配、辐射效率和频带宽度等。
1. 天线的输入阻抗
输入阻抗是天线馈电端输入电压与输入电流的比值。天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。匹配的优劣一般用四个参数来衡量即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。在我们日常维护中,用的较多的是驻波比和回波损耗。一般移动通信天线的输入阻抗为50Ω。 驻波比:它是行波系数的倒数,其值在1到无穷大之间。驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。在移动通信系统中,一般要求驻波比小于1.5,但实际应用中VSWR应小于1.2。过大的驻波比会减小基站的覆盖并造成系统内干扰加大,影响基站的服务性能。 回波损耗:它是反射系数绝对值的倒数,以分贝值表示。回波损耗的值在0dB的到无穷大之间,回波损耗越大表示匹配越差,回波损耗越大表示匹配越好。0表示全反射,无穷大表示完全匹配。在移动通信系统中,一般要求回波损耗大于14dB。
2. 天线的极化方式
所谓天线的极化,就是指天线辐射时形成的电场强度方向。当电场强度方向
垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。 因此,在移动通信系统中,一般均采用垂直极化的传播方式。另外,随着新技术的发展,最近又出现了一种双极化天线。就其设计思路而言,一般分为垂直与水平极化和±45°极化两种方式,性能上一般后者优于前者,因此目前大部分采用的是±45°极化方式。双极化天线组合了+45°和-45°两副极化方向相互正交的天线,并同时工作在收发双工模式下,大大节省了每个小区的天线数量;同时由于±45°为正交极化,有效保证了分集接收的良好效果。(其极化分集增益约为5dB,比单极化天线提高约2dB。)
3. 天线的增益
天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线最重要的参数之一。 一般来说,增益的提高主要依靠减小垂直面向辐射的波瓣宽度,而在水平面上保持全向的辐射性能。天线增益对移动通信系统的运行质量极为重要,因为它决定蜂窝边缘的信号电平。增加增益就可以在一确定方向上增大网络的覆盖范围,或者在确定范围内增大增益余量。任何蜂窝系统都是一个双向过程,增加天线的增益能同时减少双向系统增益预算余量。另外,表征天线增益的参数有dBd和dBi。DBi是相对于点源天线的增益,在各方向的辐射是均匀的;dBd相对于对称阵子天线的增益dBi=dBd+2.15。相同的条件下,增益越高,电波传播的距离越远。一般地,GSM定向基站的天线增益为18dBi,全向的为11dBi。
4. 天线的波瓣宽度
波瓣宽度是定向天线常用的一个很重要的参数,它是指天线的辐射图中低于峰值3dB处所成夹角的宽度(天线的辐射图是度量天线各个方向收发信号能力的一个指标,通常以图形方式表示为功率强度与夹角的关系)。 天线垂直的波瓣宽度一般与该天线所对应方向上的覆盖半径有关。因此,在一定范围内通过对天线垂直度(俯仰角)的调节,可以达到改善小区覆盖质量的目的,这也是我们在网络优化中经常采用的一种手段。主要涉及两个方面水平波瓣宽度和垂直平面波瓣宽度。水平平面的半功率角(H-Plane Half Power beamwidth):(45°,60°,90°等)定义了天线水平平面的波束宽度。角度越大,在扇区
交界处的覆盖越好,但当提高天线倾角时,也越容易发生波束畸变,形成越区覆盖。角度越小,在扇区交界处覆盖越差。提高天线倾角可以在移动程度上改善扇区交界处的覆盖,而且相对而言,不容易产生对其他小区的越区覆盖。在市中心基站由于站距小,天线倾角大,应当采用水平平面的半功率角小的天线,郊区选用水平平面的半功率角大的天线;垂直平面的半功率角(V-Plane Half Power beamwidth):(48°, 33°,15°,8°)定义了天线垂直平面的波束宽度。垂直平面的半功率角越小,偏离主波束方向时信号衰减越快,在越容易通过调整天线倾角准确控制覆盖范围。
5. 前后比(Front-Back Ratio)
天线的前后比表明了天线对后瓣抑制的好坏。选用前后比低的天线,天线的后瓣有可能产生越区覆盖,导致切换关系混乱,产生掉话。一般在25-30dB之间,应优先选用前后比为30的天线。
案例 常见天线参数设置
电性能(Band 1)
技术参数
性能指标
增益Gain
16dBi
频率范围Frequency Range
870 --- 960 MHz
双极化Polarisation Dual
Slant ± 45°
端口隔离度Isolation between ports
330 dB
水平平面-3dB 功率角 Horizontal Plane -3dB Power Beamwidth
65°
垂直平面-3dB 功率角 Vertical Plane -3dB Power Beamwidth

水平面-10dB Power Beamwidth Horizontal Plane -10dB Power Beamwidth
125°
阻抗Impedance
50 Ohm
回波损耗Return Loss 870-960 MHz
316 dB
前后比Front to Back Ratio
325 dB
端口最大输入功率Max Input Power per port
150 W
Electrical Downtilt
1 to 10°
Downtilt Setting Accuracy
± 0.5°
电性能(Band 2)
增益Gain
16dBi
频率范围Frequency Range
1710-1880 MHz
双极化Polarisation Dual
Slant ± 45°
端口隔离度Isolation between ports
330 dB
水平平面-3dB 功率角 Horizontal Plane -3dB Power Beamwidth
65°
垂直平面-3dB 功率角 Vertical Plane -3dB Power Beamwidth

水平面-10dB Power Beamwidth Horizontal Plane -10dB Power Beamwidth
120°
阻抗Impedance
50 Ohm
回波损耗Return Loss 870-960 MHz
314 dB
前后比Front to Back Ratio
325 dB
端口最大输入功率Max Input Power per port
125 W
电调下倾角度Electrical Downtilt
1 to 10°
电调下倾角度精确度Downtilt Setting Accuracy
± 0.5°
电性能(一般)
连接器类型Connectors Type
7/16 DIN, N optional
机械性能
高度Height
2258 mm
宽度Width
400 mm
深度Depth
139 mm
额定风速度Rated Wind Speed
200 km/hr
Thrust at Wind Speed of 160 km/hr kgf 175
重量(除安装机架) Weight(excluding mounting brackets)
TBOutline Drawing No MK105 kg
6. 天线的作用与地位
无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。
天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。
对于众多品种的天线,进行适当的分类是必要的: 按用途分类,可分为通信天线、电视天线、雷达天线等;
按工作频段分类,可分为短波天线、超短波天线、微波天线等;
按方向性分类,可分为全向天线、定向天线等;
按外形分类,可分为线状天线、面状天线等;等等分类。
(1) 对称振子
对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。
两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子, 见 图1.2 a 。
另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子, 见 图1.2 b 。
(2)天线方向性的讨论
①天线方向性
发射天线的基本功能之一是把从馈线取得的能量向周围空间辐射出去,基本功能之二是把大部分能量朝所需的方向辐射。垂直放置的半波对称振子具有平放的 “面包圈” 形的立体方向图(图1.3.1 a)。立体方向图虽然立体感强,但绘制困难, 图1.3.1 b 与图1.3.1 c 给出了它的两个主平面方向图,平面方向图描述天线在某指定平面上的方向性。从图1.3.1 b 可以看出,在振子的轴线方向上辐
射为零,最大辐射方向在水平面上;而从图1.3.1 c 可以看出,在水平面上各个方向上的辐射一样大。
② 天线方向性增强
若干个对称振子组阵,能够控制辐射,产生“扁平的面包圈” ,把信号进一步集中到在水平面方向上。下图是4个半波对称振子沿垂线上下排列成一个垂直四元阵时的立体方向图和垂直面方向图。
也可以利用反射板可把辐射能控制到单侧方向。
平面反射板放在阵列的一边构成扇形区覆盖天线下面的水平面方向图说明了反射面的作用--反射面把功率反射到单侧方向,提高了增益。 天线的基本知识全向阵 (垂直阵列不带平面反射板)。
抛物反射面的使用,更能使天线的辐射,像光学中的探照灯那样,把能量集中到一个小立体角内,从而获得很高的增益。不言而喻,抛物面天线的构成包括
两个基本要素:抛物反射面和放置在抛物面焦点上的辐射源。
③增益
增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。它定量地描述一个天线把输入功率集中辐射的程度。增益显然与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。可以这样来理解增益的物理含义为在一定的距离上的某点处产生一定大小的信号。
如果用理想的无方向性点源作为发射天线,需要100W的输入功率,而用增益为 G = 13 dB = 20的某定向天线作为发射天线时,输入功率只需 100 / 20 = 5W . 换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。
半波对称振子的增益为G = 2.15 dBi ; 4个半波对称振子 沿垂线上下排列,构成一个垂直四元阵,其增益约为G = 8.15 dBi ( dBi这个单位表示比较对象是各向均匀辐射的理想点源) 。 如果以半波对称振子作比较对象,则增益的单位是dBd 。半波对称振子的增益为G = 0 dBd (因为是自己跟自己比,比值为1,取对数得零值。) ; 垂直四元阵,其增益约为G = 8.15 – 2.15 = 6 dB。.
④波瓣宽度
方向图通常都有两个或多个瓣,其中辐射强度最大的瓣称为主瓣,其余的瓣称为副瓣或旁瓣。参见图1.3.4 a , 在主瓣最大辐射方向两侧,辐射强度降低 3 dB(功率密度降低一半)的两点间的夹角定义为波瓣宽度(又称 波束宽度 或 主瓣宽度 或 半功率角)。波瓣宽度越窄,方向性越好,作用距离越远,抗干扰能
力越强。
还有一种波瓣宽度,即 10dB波瓣宽度,顾名思义它是方向图中辐射强度降低 10dB (功率密度降至十分之一) 的两个点间的夹角,见图1.3.4 b .
⑤ 前后比
方向图中,前后瓣最大值之比称为前后比,记为 F / B 。前后比越大,天线的后向辐射(或接收)越小。前后比F / B 的计算十分简单--- F / B = 10 Lg {(前向功率密度) /( 后向功率密度)}对天线的前后比F / B 有要求时,其典型值为 (18 --- 30)dB,特殊情况下则要求达(35 --- 40)dB 。
⑥天线增益的若干近似计算式
a. 天线主瓣宽度越窄,增益越高。对于一般天线,可用下式估算其增益:
G( dBi) = 10 Lg { 32000 /( 2θ3dB,E ×2θ3dB,H)}
式中, 2θ3dB,E 与 2θ3dB,H 分别为天线在两个主平面上的波瓣宽度; 32000 是统计出来的经验数据。
b. 对于抛物面天线,可用下式近似计算其增益:
G(dBi)= 10 Lg { 4.5 × (D / λ0 2)}
式中, D 为抛物面直径; λ0 为中心工作波长; 4.5 是统计出来的经验数据。
c. 对于直立全向天线,有近似计算式
G(dBi)= 10 Lg { 2 L / λ0 }
式中, L 为天线长度;λ0 为中心工作波长;
⑦上旁瓣抑制
对于基站天线,人们常常要求它的垂直面(即俯仰面)方向图中,主瓣上方第一旁瓣尽可能弱一些。这就是所谓的上旁瓣抑制。基站的服务对象是地面上的移动电话用户,指向天空的辐射是毫无意义的。
⑧天线的下倾
为使主波瓣指向地面,安置时需要将天线适度下倾。
(3) 天线的极化
天线向周围空间辐射电磁波。电磁波由电场和磁场构成。人们规定:电场的方向就是天线极化方向。一般使用的天线为单极化的。下图示出了两种基本的单极化的情况:垂直极化---是最常用的;水平极化---也是要被用到的。
①双极化天线
下图示出了另两种单极化的情况:+45° 极化 与 -45° 极化,它们仅仅在特殊场合下使用。这样,共有四种单极化了,见下图。 把垂直极化和水平极化两种极化的天线组合在一起,或者, 把 +45° 极化和 -45° 极化两种极化的天线组合在一起,就构成了一种新的天线---双极化天线。
下图示出了两个单极化天线安装在一起组成一付双极化天线,注意,双极化天线有两个接头. 双极化天线辐射(或接收)两个极化在空间相互正交(垂直)
的波。
②极化损失 垂直极化波要用具有垂直极化特性的天线来接收,水平极化波要用具有水平极化特性的天线来接收。右旋圆极化波要用具有右旋圆极化特性的天线来接收,而左旋圆极化波要用具有左旋圆极化特性的天线来接收。
当来波的极化方向与接收天线的极化方向不一致时,接收到的信号都会变小,也就是说,发生极化损失。例如:当用+ 45° 极化天线接收垂直极化或水平极化波时,或者,当用垂直极化天线接收 +45° 极化或 -45°极化波时,等等情况下,都要产生极化损失。用圆极化天线接收任一线极化波,或者,用线极化天线接收任一圆极化波,等等情况下,也必然发生极化损失------只能接收到来波的一半能量。
当接收天线的极化方向与来波的极化方向完全正交时,例如用水平极化的接收天线接收垂直极化的来波,或用右旋圆极化的接收天线接收左旋圆极化的来波时,天线就完全接收不到来波的能量, 这种情况下极化损失为最大,称极化完全隔离。
③ 极化隔离
理想的极化完全隔离是没有的。馈送到一种极化的天线中去的信号多少总会有那么一点点在另外一种极化的天线中出现。例如下图所示的双极化天线中,设输入垂直极化天线的功率为10W,结果在水平极化天线的输出端测得的输出功率为 10mW。
(4) 天线的输入阻抗 Zin
定义:天线输入端信号电压与信号电流之比,称为天线的输入阻抗。 输入阻抗具有电阻分量 Rin 和电抗分量 Xin ,即 Zin = Rin + j Xin 。电抗分量的存在会减少天线从馈线对信号功率的提取,因此,必须使电抗分量尽可能为零,也就是应尽可能使天线的输入阻抗为纯电阻。事实上,即使是设计、调试得很好的天线,其输入阻抗中总还含有一个小的电抗分量值。 输入阻抗与天线的结构、尺寸以及工作波长有关,半波对称振子是最重要的基本天线 ,其输入阻抗为 Zin = 73.1+j42.5 (欧) 。当把其长度缩短(3~5)%时,就可以消除其中的电抗分量,使天线的输入阻抗为纯电阻,此时的输入阻抗为 Zin = 73.1 (欧) ,(标称 75 欧) 。注意,严格的说,纯电阻性的天线输入阻抗只是对点频而言的。
顺便指出,半波折合振子的输入阻抗为半波对称振子的四倍,即
Zin = 280 (欧) ,(标称300欧)。
有趣的是,对于任一天线,人们总可通过天线阻抗调试,在要求的工作频率范围内,使输入阻抗的虚部很小且实部相当接近 50 欧,从而使得天线的输入阻抗为Zin = Rin = 50 欧------这是天线能与馈线处于良好的阻抗匹配所必须的。
(5)天线的工作频率范围(频带宽度)
无论是发射天线还是接收天线,它们总是在一定的频率范围(频带宽度)内工作的,天线的频带宽度有两种不同的定义------
一种是指:在驻波比SWR ≤ 1.5 条件下,天线的工作频带宽度;
一种是指:天线增益下降 3 分贝范围内的频带宽度。
在移动通信系统中,通常是按前一种定义的,具体的说,天线的频带宽度就是天线的驻波比SWR 不超过 1.5 时,天线的工作频率范围。
一般说来,在工作频带宽度内的各个频率点上, 天线性能是有差异的,但这种差异造成的性能下降是可以接受的。
(6) 移动通信常用的基站天线、直放站天线与室内天线
① 板状天线的基本知识
无论是GSM 还是CDMA,板状天线是用得最为普遍的一类极为重要的基站天线。这种天线的优点是:增益高、扇形区方向图好、后瓣小、垂直面方向图俯角控制方便、密封性能可靠以及使用寿命长。
板状天线也常常被用作为直放站的用户天线,根据作用扇形区的范围大小,应选择相应的天线型号。
a. 基站板状天线基本技术指标示例
b. 板状天线高增益的形成
c. 在直线阵的一侧加一块反射板 (以带反射板的二半波振子垂直阵为例)
d. 为提高板状天线的增益,还可以进一步采用八个半波振子排阵
前面已指出,四个半波振子排成一个垂直放置的直线阵的增益约为 8 dB;一侧加有一个反射板的四元式直线阵,即常规板状天线,其增益约为 14 --- 17 dB 。
一侧加有一个反射板的八元式直线阵,即加长型板状天线,其增益约为 16--- 19 dB 。不言而喻,加长型板状天线的长度,为常规板状天线的一倍,达2.4 m 左
右。
e. 高增益栅状抛物面天线
从性能价格比出发,人们常常选用栅状抛物面天线作为直放站施主天线。由于抛物面具有良好的聚焦作用,所以抛物面天线集射能力强,直径为1.5 m的栅状抛物面天线,在900兆频段,其增益即可达 G = 20 dB 。它特别适用于点对点的通信,例如它常常被选用为直放站的施主天线。
抛物面采用栅状结构,一是为了减轻天线的重量,二是为了减少风的阻力。
抛物面天线一般都能给出 不低于 30 dB 的前后比 ,这也正是直放站系统防自激而对接收天线所提出的必须满足的技术指标。
f. 八木定向天线
八木定向天线,具有增益较高、结构轻巧、架设方便、价格便宜等优点。因此,它特别适用于点对点的通信,例如它是室内分布系统的室外接收天线的首选天线类型。
八木定向天线的单元数越多,其增益越高,通常采用 6 --- 12 单元的八木定向天线,其增益可达10---15 dB 。
g. 室内吸顶天线
室内吸顶天线必须具有结构轻巧、外型美观、安装方便等优点。
现今市场上见到的室内吸顶天线,外形花色很多,但其内芯的购造几乎都是一样的。这种吸顶天线的内部结构,虽然尺寸很小,但由于是在天线宽带理论的基础上,借助计算机的辅助设计,以及使用网络分析仪进行调试,所以能很好地满足在非常宽的工作频带内的驻波比要求,按照国家标准,在很宽的频带内工作的天线其驻波比指标为VSWR ≤ 2 。当然,能达到VSWR ≤ 1.5 更好。顺便指出,室内吸顶天线属于低增益天线, 一般为 G = 2 dB 。
h. 室内壁挂天线
室内壁挂天线同样必须具有结构轻巧、外型美观、安装方便等优点。
现今市场上见到的室内吸顶天线,外形花色很多,但其内芯的购造几乎也都是一样的。这种壁挂天线的内部结构,属于空气介质型微带天线。由于采用了展宽天线频宽的辅助结构,借助计算机的辅助设计,以及使用网络分析仪进行调试,所以能较好地满足了工作宽频带的要求。顺便指出,室内壁挂天线具有一定的增益,约为G = 7 dB 。
(7) 电波传播的几个基本概念
目前GSM和CDMA移动通信使用的频段为:
GSM:890 --- 960 MHz, 1710 --- 1880 MHz
CDMA: 806 --- 896 MHz
806 --- 960 MHz 频率范围属超短波范围; 1710 --- 1880 MHz 频率范围属微波范围。
电波的频率不同,或者说波长不同,其传播特点也不完全相同,甚至很不相同。
① 自由空间通信距离方程
设发射功率为PT,发射天线增益为GT,工作频率为f . 接收功率为PR,接收天线增益为GR,收、发天线间距离为R,那么电波在无环境干扰时,传播途中的电波损耗 L0 有以下表达式:
L0 (dB) = 10 Lg( PT / PR )
= 32.45 + 20 Lg f ( MHz ) + 20 Lg R ( km ) - GT (dB) - GR (dB)
[举例] 设:PT = 10 W = 40dBmw ;GR = GT = 7 (dBi) ; f = 1910MHz
问:R = 500 m 时, PR = ?
解答:
􀁺 L0 (dB) 的计算
L0 (dB) = 32.45 + 20 Lg 1910( MHz ) + 20 Lg 0.5 ( km ) - GR (dB) - GT (dB)
= 32.45 + 65.62 - 6 - 7 - 7 = 78.07 (dB)
􀁺 PR 的计算
PR = PT / ( 10 7.807 ) = 10 ( W ) / ( 10 7.807 ) = 1 ( μW ) / ( 10 0.807 )
= 1 ( μW ) / 6.412 = 0.156 ( μW ) = 156 ( mμW ) #
顺便指出,1.9GHz电波在穿透一层砖墙时,大约损失 (10---15) dB
② 超短波和微波的传播视距
a.极限直视距离
超短波特别是微波,频率很高,波长很短,它的地表面波衰减很快,因此不能依靠地表面波作较远距离的传播。超短波特别是微波,主要是由空间波来传播的。简单地说,空间波是在空间范围内沿直线方向传播的波。显然,由于地球的曲率使空间波传播存在一个极限直视距离Rmax 。在最远直视距离之内的区域,习惯上称为照明区;极限直视距离Rmax以外的区域,则称为阴影区。不言而语,利用超短波、微波进行通信时,接收点应落在发射天线极限直视距离Rmax内。
受地球曲率半径的影响,极限直视距离Rmax 和发射天线与接收天线的高度HT 与 HR间的关系为 : Rmax = 3.57{ √HT (m) +√HR (m) } (km)
考虑到大气层对电波的折射作用,极限直视距离应修正为
Rmax = 4.12 { √HT (m) +√HR (m) } (km)
由于电磁波的频率远低于光波的频率,电波传播的有效直视距离 Re 约为 极限直视距离Rmax的 70% ,即 Re = 0.7 Rmax .
例如,HT 与 HR 分别为 49 m 和 1.7 m,则有效直视距离为 Re = 24 km .
b. 电波在平面地上的传播特征
由发射天线直接射到接收点的电波称为直射波;发射天线发出的指向地面的电波,被地面反射而到达接收点的电波称为反射波。显然,接收点的信号应该是直射波和反射波的合成。电波的合成不会象 1 + 1 = 2 那样简单地代数相加,合成结果会随着直射波和反射波间的波程差的不同而不同。 波程差为半个波长的奇数倍时,直射波和反射波信号相加,合成为最大;波程差为一个波长的倍数时,直射波和反射波信号相减,合成为最小。可见,地面反射的存在,使得信号强度的空间分布变得相当复杂。
实际测量指出:在一定的距离 Ri之内,信号强度随距离或天线高度的增加都会作起伏变化; 在一定的距离 Ri之外,随距离的增加或天线高度的减少,信号强度将。单调下降。理论计算给出了这个 Ri 和天线高度 HT与 HR 的关系式:Ri = (4 HT HR )/ l ,l 是波长。
不言而喻, Ri 必须小于极限直视距离Rmax 。
c. 电波的多径传播
在超短波、微波波段,电波在传播过程中还会遇到障碍物(例如楼房、高大建筑物或山丘等) 对电波产生反射。因此,到达接收天线的还有多种反射波(广意地说,地面反射波也应包括在内),这种现象叫为多径传播。
由于多径传输,使得信号场强的空间分布变得相当复杂,波动很大,有的地方信号场强增强,有的地方信号场强减弱;也由于多径传输的影响,还会使电波的极化方向发生变化。另外,不同的障碍物对电波的反射能力也不同。例如:钢筋水泥建筑物对超短波、微波的反射能力比砖墙强。我们应尽量克服多径传输效应的负面影响,这也正是在通信质量要求较高的通信网中,人们常常采用空间分集技术或极化分集技术的缘由。
d. 电波的绕射传播
在传播途径中遇到大障碍物时,电波会绕过障碍物向前传播,这种现象叫做电波的绕射。超短波、微波的频率较高,波长短,绕射能力弱,在高大建筑物后面信号强度小,形成所谓的“阴影区”。信号质量受到影响的程度,不仅和建筑物的高度有关,和接收天线与建筑物之间的距离有关,还和频率有关。例如有一个建筑物,其高度为 10 米,在建筑物后面距离200 米处,接收的信号质量几乎不受影响,但在 100 米处,接收信号场强比无建筑物时明显减弱。注意,诚如上面所说过的那样,减弱程度还与信号频率有关,对于 216 ~ 223 兆赫的射频信号,接收信号场强比无建筑物时低16 dB,对于 670 兆赫的射频信号,接收信号场强比无建筑物时低20dB .如果建筑物高度增加到50 米时,则在距建筑物 1000 米以内,接收信号的场强都将受到影响而减弱。也就是说,频率越高、建筑物越高、接收天线与建筑物越近,信号强度与通信质量受影响程度越大;相反,频率越低,建筑物越矮、接收天线与建筑物越远,影响越小。
因此,选择基站场地以及架设天线时,一定要考虑到绕射传播可能产生的各种不利影响,注意到对绕射传播起影响的各种因素。
(8) 传输线的几个基本概念
连接天线和发射机输出端(或接收机输入端)的电缆称为传输线或馈线。传输线的主要任务是有效地传输信号能量,因此,它应能将发射机发出的信号功率以最小的损耗传送到发射天线的输入端,或将天线接收到的信号以最小的损耗传送到接收机输入端,同时它本身不应拾取或产生杂散干扰信号,这样,就要求传输线必须屏蔽。
顺便指出,当传输线的物理长度等于或大于所传送信号的波长时,传输线又叫做长线。
(9) 传输线的种类
超短波段的传输线一般有两种:平行双线传输线和同轴电缆传输线;微波波段的传输线有同轴电缆传输线、波导和微带。平行双线传输线由两根平行的导线组成它是对称式或平衡式的传输线,这种馈线损耗大,不能用于UHF频段。同轴电缆传输线的两根导线分别为芯线和屏蔽铜网,因铜网接地,两根导体对地不对称,因此叫做不对称式或不平衡式传输线。同轴电缆工作频率范围宽,损耗小,对静电耦合有一定的屏蔽作用,但对磁场的干扰却无能为力。使用时切忌与有强电流的线路并行走向,也不能靠近低频信号线路。
(10)传输线的特性阻抗
无限长传输线上各处的电压与电流的比值定义为传输线的特性阻抗,用Z0 表示。
同轴电缆的特性阻抗的计算公式为
Z。=〔60/√εr〕×Log ( D/d ) [ 欧]。
式中,D 为同轴电缆外导体铜网内径; d 为同轴电缆芯线外径; εr为导体间绝缘介质的相对介电常数。通常Z0 = 50 欧 ,也有Z0 = 75 欧的。
由上式不难看出,馈线特性阻抗只与导体直径D和d以及导体间介质的介电常数εr有关,而与馈线长短、工作频率以及馈线终端所接负载阻抗无关。
(11) 馈线的衰减系数
信号在馈线里传输,除有导体的电阻性损耗外,还有绝缘材料的介质损耗。这两种损耗随馈线长度的增加和工作频率的提高而增加。因此,应合理布局尽量缩短馈线长度。
单位长度产生的损耗的大小用衰减系数 β 表示,其单位为 dB / m (分贝/米),电缆技术说明书上的单位大都用 dB / 100 m(分贝/百米) .
设输入到馈线的功率为P1 ,从长度为 L(m ) 的馈线输出的功率为P2 ,传输损耗TL可表示为: TL = 10 ×Lg ( P1 /P2 ) ( dB ) ,衰减系数 为 β = TL / L ( dB / m )
例如, NOKIA 7 / 8英寸低耗电缆, 900MHz 时衰减系数为 β = 4.1 dB / 100 m ,也可写成 β = 3 dB / 73 m , 也就是说, 频率为 900MHz 的信号功率,每经过 73 m 长的这种电缆时,功率要少一半。
而普通的非低耗电缆,例如, SYV-9-50-1, 900MHz 时衰减系数为 β = 20.1 dB / 100 m , 也可写成 β = 3 dB / 15 m , 也就是说, 频率为 900MHz 的信号功率,每经过15 m 长的这种电缆时,功率就要少一半!
(12)匹配概念
什么叫匹配?简单地说,馈线终端所接负载阻抗ZL 等于馈线特性阻抗Z0 时,称为馈线终端是匹配连接的。匹配时,馈线上只存在传向终端负载的入射波,而没有由终端负载产生的反射波,因此,当天线作为终端负载时,匹配能保证天线取得全部信号功率。如下图所示,当天线阻抗为 50 欧时,与50 欧的电缆是匹配的,而当天线阻抗为 80 欧时,与50 欧的电缆是不匹配的。
如果天线振子直径较粗,天线输入阻抗随频率的变化较小,容易和馈线保持匹配,这时天线的 工作频率范围就较宽。反之,则较窄。
在实际工作中,天线的输入阻抗还会受到周围物体的影响。为了使馈线与天线良好匹配,在架设天线时还需要通过测量,适当地调整天线的局部结构,或加装匹
配装置。
(13) 反射损耗
前面已指出,当馈线和天线匹配时,馈线上没有反射波,只有入射波,即馈线上传输的只是向天线方向行进的波。这时,馈线上各处的电压幅度与电流幅度都相等,馈线上任意一点的阻抗都等于它的特性阻抗。
而当天线和馈线不匹配时,也就是天线阻抗不等于馈线特性阻抗时,负载就只能吸收馈线上传输的部分高频能量,而不能全部吸收,未被吸收的那部分能量将反射回去形成反射波。
例如,在右图中,由于天线与馈线的阻抗不同,一个为75 ohms,一个为50 ohms ,阻抗不匹配,其结果是
(14) 电压驻波比
在不匹配的情况下, 馈线上同时存在入射波和反射波。在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;而在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin ,形成波节。其它各点的振幅值则介于波腹与波节之间。这种合成波称为行驻波。
反射波电压和入射波电压幅度之比叫作反射系数,记为 R
反射波幅度 (ZL-Z0)
R = ───── = ───────
入射波幅度 (ZL+Z0 )
波腹电压与波节电压幅度之比称为驻波系数,也叫电压驻波比,记为 VSWR
波腹电压幅度 Vmax (1 + R)
VSWR = ─────── = ────
波节电压辐度 Vmin (1 - R)
终端负载阻抗ZL 和特性阻抗Z0 越接近,反射系数 R 越小,驻波比VSWR 越接近于1,匹配也就越好。
(15)平衡装置
信号源或负载或传输线,根据它们对地的关系,都可以分成平衡和不平衡两类。
若信号源两端与地之间的电压大小相等、极性相反,就称为平衡信号源,否则称为不平衡信号源;若负载两端与地之间的电压大小相等、极性相反,就称为平衡负载,否则称为不平衡负载;若传输线两导体与地之间阻抗相同,则称为平衡传输线,否则为不平衡传输线。
在不平衡信号源与不平衡负载之间应当用同轴电缆连接,在平衡信号源与平衡负载之间应当用平行双线传输线连接,这样才能有效地传输信号功率,否则它们的平衡性或不平衡性将遭到破坏而不能正常工作。如果要用不平衡传输线与平衡负载相连接,通常的办法是在粮者之间加装“平衡-不平衡”的转换装置,一般称为平衡变换器 。
①二分之一波长平衡变换器
又称“U”形管平衡变换器,它用于不平衡馈线同轴电缆与平衡负载半波对称振子之间的连接。“U”形管平衡变换器还有 1:4 的阻抗变换作用。移动通信系统采用的同轴电缆特性阻抗通常为50欧,所以在YAGI天线中,采用了折合半波振子,使其阻抗调整到200欧左右,实现最终与主馈线50欧同轴电缆的阻抗
匹配。
②四分之一波长平衡-不平衡器
利用四分之一波长短路传输线终端为高频开路的性质实现天线平衡输入端口与同轴馈线不平衡输出端口之间的平衡-不平衡变换。
第二讲 天线的分类与选择
移动通信天线的技术发展很快,最初中国主要使用普通的定向和全向型移动天线,后来普遍使用机械天线,现在一些省市的移动网已经开始使用电调天线和双极化移动天线。由于目前移动通信系统中使用的各种天线的使用频率,增益和前后比等指标差别不大,都符合网络指标要求,我们将重点从移动天线下倾角度改变对天线方向图及无线网络的影响方面,对上述几种天线进行分析比较。
1. 全向天线
全向天线,即在水平方向图上表现为360°都均匀辐射,也就是平常所说的无方向性,在垂直方向图上表现为有一定宽度的波束,一般情况下波瓣宽度越小,增益越大。全向天线在移动通信系统中一般应用与郊县大区制的站型,覆盖范围大。
2. 定向天线
定向天线,在在水平方向图上表现为一定角度范围辐射,也就是平常所说的有方向性,在垂直方向图上表现为有一定宽度的波束,同全向天线一样,波瓣宽度越小,增益越大。定向天线在移动通信系统中一般应用于城区小区制的站型,覆盖范围小,用户密度大,频率利用率高。 根据组网的要求建立不同类型的基站,而不同类型的基站可根据需要选择不同类型的天线。选择的依据就是上述技术参数。比如全向站就是采用了各个水平方向增益基本相同的全向型天线,而定向站就是采用了水平方向增益有明显变化的定向型天线。一般在市区选择水平波束宽度B为65°的天线,在郊区可选择水平波束宽度B为65°、90°或120°的天线(按照站型配置和当地地理环境而定),而在乡村选择能够实现大范围覆盖的全向天线则是最为经济的。
3. 机械天线
所谓机械天线,即指使用机械调整下倾角度的移动天线。 机械天线与地面垂直安装好以后,如果因网络优化的要求,需要调整天线背面支架的位置改变天线的倾角来实现。在调整过程中,虽然天线主瓣方向的覆盖距离明显变化,但天线垂直分量和水平分量的幅值不变,所以天线方向图容易变形。 实践证明:机械天线的最佳下倾角度为1°-5°;当下倾角度在5°-10°变化时,其天线方向图稍有变形但变化不大;当下倾角度在10°-15°变化时,其天线方向图变化较大;当机械天线下倾15°后,天线方向图形状改变很大,从没有下倾时的鸭梨形变为纺锤形,这时虽然主瓣方向覆盖距离明显缩短,但是整个天线方向图不是都在本基站扇区内,在相邻基站扇区内也会收到该基站的信号,从而造成严重的系统内干扰。 另外,在日常维护中,如果要调整机械天线下倾角度,整个系统要关机,不
能在调整天线倾角的同时进行监测;机械天线调整天线下倾角度非常麻烦,一般需要维护人员爬到天线安放处进行调整;机械天线的下倾角度是通过计算机模拟分析软件计算的理论值,同实际最佳下倾角度有一定的偏差;机械天线调整倾角的步进度数为1°,三阶互调指标为-120dBc。
4. 电调天线
所谓电调天线,即指使用电子调整下倾角度的移动天线。 电子下倾的原理是通过改变共线阵天线振子的相位,改变垂直分量和水平分量的幅值大小,改变合成分量场强强度,从而使天线的垂直方向性图下倾。由于天线各方向的场强强度同时增大和减小,保证在改变倾角后天线方向图变化不大,使主瓣方向覆盖距离缩短,同时又使整个方向性图在服务小区扇区内减小覆盖面积但又不产生干扰。实践证明,电调天线下倾角度在1°-5°变化时,其天线方向图与机械天线的大致相同;当下倾角度在5°-10°变化时,其天线方向图较机械天线的稍有改善;当下倾角度在10°-15°变化时,其天线方向图较机械天线的变化较大;当机械天线下倾15°后,其天线方向图较机械天线的明显不同,这时天线方向图形状改变不大,主瓣方向覆盖距离明显缩短,整个天线方向图都在本基站扇区内,增加下倾角度,可以使扇区覆盖面积缩小,但不产生干扰,这样的方向图是我们需要的,因此采用电调天线能够降低呼损,减小干扰。 另外,电调天线允许系统在不停机的情况下对垂直方向性图下倾角进行调整,实时监测调整的效果,调整倾角的步进精度也较高(为0.1°),因此可以对网络实现精细调整;电调天线的三阶互调指标为-150dBc,较机械天线相差30dBc,有利于消除邻频干扰和杂散干扰。
5. 双极化天线
双极化天线是一种新型天线技术,组合了+45°和-45°两副极化方向相互正交的天线并同时工作在收发双工模式下,因此其最突出的优点是节省单个定向基站的天线数量;一般GSM数字移动通信网的定向基站(三扇区)要使用9根天线, 每个扇形使用3根天线(空间分集,一发两收),如果使用双极化天线,每个扇形只需要1根天线;同时由于在双极化天线中,±45°的极化正交性可以保证+45°和-45°两副天线之间的隔离度满足互调对天线间隔离度的要求(≥30dB),因此双极化天线之间的空间间隔仅需20-30cm;另外,双极化天线具有电调天线的优点,在移动通信网中使用双极化天线同电调天线一样,可以降低呼损,减小干扰,提高全网的服务质量。如果使用双极化天线,由于双极化天线对架设安装要求不高,不需要征地建塔,只需要架一根直径20cm的铁柱,将双极化天线按相应覆盖方向固定在铁柱上即可,从而节省基建投资,同时使基站布局更加合理,基站站址的选定更加容易。
对于天线的选择,我们应根据自己移动网的覆盖,话务量,干扰和网络服务质量等实际情况,选择适合本地区移动网络需要的移动天线:
a.在基站密集的高话务地区,应该尽量采用双极化天线和电调天线; b.在边、郊等话务量不高,基站不密集地区和只要求覆盖的地区,可以使用传统
的机械天线。 我国目前的移动通信网在高话务密度区的呼损较高,干扰较大,其中一个重要原因是机械天线下倾角度过大,天线下倾角度过大,天线方向图严重变形。要解决高话务区的容量不足,必须缩短站距,加大天线下倾角度,但是使用机械天线,下倾角度大于5°时,天线方向图就开始变形,超过10°时,天线方向图严重变形,因此采用机械天线,很难解决用户高密度区呼损高、干扰大的问题。因此建议在高话务密度区采用电调天线或双极化天线替换机械天线,替换下来的机械天线可以安装在农村,郊区等话务密度低的地区。
天线分类列表
产品分类
产品名称
性能指标
斜架对数周期天线
频段:短波、超短波 带宽:10倍频以上 方向:定向 增益:8~10dB(单副天线) 驻波系数:≤2(一般情况)
转动对数周期天线
频段:短波、超短波 带宽:宽带 转动:360°正、反转,可控 增益:8~10dB 驻波系数:≤2(一般情况)
移动式对数周期天线
频段:3~30MHz 增益:6~10dB 驻波系数:≤2(一般情况) 车载流动使用
对数周期天线
对数周期天线天线阵
频段:短波 带宽:宽带 组阵:2元~36元 增益:12~25dB 驻波系数:≤2(一般情况)
多模多馈天线
频段:短波 方向:全向 增益:3~5dB 驻波系数:≤2(一般情况) 三路同时工作
扇锥天线
频段:短波 带宽:宽带 方向:近似全向 增益:5~7dB 驻波系数:≤2(一般情况)
伞锥天线
频段:短波 带宽:宽带 增益:3~4dB方向:全向 驻波系数:≤2(一般情况)
短波宽带天线
频段:短波 带宽:宽带 增益:3~5dB 驻波系数:≤2.5(一般情况) 功率:150W
车载短波天线
频段:短波 配天调工作 通信距离:0~1000Km 功率:150W
短波天线
分支笼天线
频段:短波 带宽:3倍频 增益:5dB驻波系数:≤2(一般情况) 功率:150W
宽带垂直天线
频段:短波 带宽:宽带 增益:3~5dB 驻波系数:≤2(一般情况)
八木天线(阵)
频段:短波、超短波 带宽:5% 增益:5~18dB 驻波系数:≤2(一般情况)
全向天线
频段:超短波 带宽:5%增益:8~12dB驻波系数:≤2(一般情况)
同相水平天线
频段:短波、超短波带宽:窄带增益:10~20dB驻波系数:≤2(一般情况)
超短波抛物面天线
频段:890~960MHz增益:>22dB驻波系数:≤1.5(一般情况)前后比:>26dB
超短波天线
超短波宽带全向天线
频段:610~960MHz增益:>8dB驻波系数:≤2(一般情况)极化:垂直
常用的短波天线主要分为3类,第一类是垂直天线(GP),第二类是偶级天线(DP),第三类为八木天线(YAGI)。除此之外,还有框型、钻石型、碟型等等,这里我们主要讨论前三类天线,其中重点探讨偶级天线及其变形。从使用来看,GP天线主要用于近距离—中距离通讯,尤其是近距离通讯依靠地波传送,效果非常好。而DP天线的近距离通讯效果惨不忍睹。由于高度的限制,普通爱好者不可能架设很高的天线,一般来说5-10米高度的GP天线适合自己架设。 通常GP天线用于21-29M频段较为普遍,再低的频段就不再使用GP天线了。此外,GP天线的防雷也比较难做,总不可能在天线旁边树一根比天线还高的铁管做避雷针吧? 这是一支典型的DP天线的结构,其中红色部分为绝缘子,和两端的牵引绳隔开。主振子长度为1/2波长*0.95缩短率。为何要采用1/2波长呢?这是因为1/2波长中心抽头后两端各为1/4波长,这样天线的阻抗为50欧姆,才能够和发射机相匹配。 DP天线主要采用天波通讯,远距离通讯的效果非常好,且架设简单,不需要竖起很高的天线,制作成本低廉,因此为大多数无线电爱好者所采用。DP天线有许多变形,下面我向大家一一做个介绍。 倒“V”天线,这是DP天线的一种变形方式,这样做的一则可以节省天线的占地面积,另一方面,可以改善原先DP天线的近距离地波通讯效果。但这样做之后,天线具有了方向性,参见图中的最大辐射方向。 由于短波发射机可以工作在0-30M的各个波段,因此单一长度的天线就不能满足我们的需要了,而为每一个波段分别制作一根天线又不现实。 这样,我们就需要一根多波段的倒“V”天线。这样做的好处是节省占地面积,又不需要几根天线来回切换。但这样做的坏处是各波段振子相互影响,需要逐个修剪振子的长度,以达到最佳的匹配状态。 偶级天线需要制作两半一模一样的振子,对于有经验的HAM来说,一个小时就可以制作完成一副多波段天线。那么对于新手来说,有什么好办法可以立刻使用到手的机器呢?当然可以!下面我们就来谈谈单极天线。
图中所示的就是一根单极天线的原型。只要振子的长度足够长,就可以涵盖各个频段。单级天线只有一根振子,如果用作多频段天线,需要使用天线调谐器来适合不同的频段。 这也是单级天线的一种:WINDOM,译称温顿天线,又称偏馈天线。其振子长度为1/2波长*0.95,馈电点偏离中点14%,馈线为单根导线。 单极天线也可以做成多波段,这就是一支多波段单极天线,中心需要加1:5平衡/不平衡转换器。值得注意的是,单极天线可能带有高压,因此发射机必须可*接地,天线振子也要放置在无法触及的地方,以防触电。 其实短波天线并不神秘,只要经过调整都可以很好地工作。例如我自制的“W”型天线,是倒“V”天线的一种变形,使用效果也很满意。因此,只要掌握原理,开动脑筋发挥您的想象,您也可以设计出优秀的短波天线!
第三讲 移动通信系统天线安装规范
由于移动通信的迅猛发展,目前全国许多地区存在多网并存的局面,即A、B、G三网并存,其中有些地区的G网还包括GSM9000和GSM1800。为充分利用资源,实现资源共享,我们一般采用天线共塔的形式。这就涉及到天线的正确安装问题,即如何安装才能尽可能地减少天线之间的相互影响。在工程中我们一般用隔离度指标来衡量,通常要求隔离度应至少大于30dB,为满足该要求,常采用使天线在垂直方向隔开或在水平方向隔开的方法,实践证明,在天线间距相同时,垂直安装比水平安装能获得更大的隔离度。
通信设备天线的种类较多,其性能也有所不同。就通信设备体积大小和移动性能而言,天线则有基地固定式通信设备天线、车载式通信设备天线和便携袖珍式通信设备天线等。
1.基地固定式通信设备天线
由于基地或固定式通信设备具有一定的通信范围要求加之下属移动通信设备天线较矮的缘故,为保证视距范围内的通信,要求基地或固定式通信设备的天线架设应尽量高,一般架设在高层建筑物的顶部或铁塔上。 (1)常用天线种类 ①J型天线 它是将同轴线的芯线伸长而成。天线部分长度为λ/2(λ为波长),末端馈电借λ/4长的阻抗变换器与同轴馈线阻抗匹配,如图所示,图是为了防止雷击而把电缆芯线与外皮对调而成。
②同轴偶极天线 它是用同轴线的外套与芯线伸长部分组成一个半波垂直振子,在半波振子的中点接入同轴馈电线而成,如图所示。
③布朗天线它是将半波偶极天线下半部分导体改成四根辐向线,垂直辐射部分折叠接地而成,如图所示。这样制作既能提高天线输入阻抗与工作带宽,又能起防雷击作用.
图 引向天线
④引向天线 它是由一根有源振子和几根无源振子(引向器和反射器)组成的寄生天线。一般有源振子长度为半波谐振长度,引向器较有源振子约短5~15%,反射器较有源振子约长5~15%,反射器与有源振子问的距商为(0.1~0.25)λ,引向器与有源振子间距离为(0.1~0.34)λ,其型式之一如图所示。
⑤全向高增益天线 将半波振子垂直的二单元、四单元或六单元排列组阵,水平方向图没有变化,依旧为一个圆,而垂直方向性将增强,因而可以获得全向高增益天线。 当工作频率比较高时,高增益天线还可以使用交叉连接同轴电缆段来组成,每段电缆的内导体和相邻电缆的外导体交替连接,每段电缆的长度等于电缆中电波的半波长,外皮上的电流分布相位相同。串联后的同轴电缆全部安装在玻璃钢套管内密封,下面用电缆引出。
2.天线架设
(1)天线尽可能架设到高处,使电波传播距离增加。这点对在城市中使用的超短波通信设备而言,尤其重要。 (2)架设天线要避开周围障碍物,力求做到在通信方向上无阻挡。对输电线铁塔等小障碍物要离开天线一定的距离,最好不要位于通信方向上;对高地的陡峭斜坡、金属、石头和钢筋混凝土建筑等大障碍物,则要求离开天线的距离越远越好。
(3)天线夹板应夹于天线内部接线器部分,不应该夹于天线发射体上,以免影响天线的性能。
(4)高频电缆不要笔直垂下,最好绕一圈,如图1-16所示。固定后,使受力分散,同时也有避雷作用。
(5)高频电缆的外层较柔软,当心破损,以免屏蔽线外露。
(6)天线与高频电缆通常是用联接器连接的,必须旋接紧密,卷上防水胶带,防止水渗入(在防水胶带外再包上塑料胶带就更可靠了)。
(7)在多雷电地区,要装置避雷针。装置的避雷针在条件允许下应尽量离天线远一些,以免影响天线方向性,并高于天线,且保护角应小于45o(即避雷针顶点与天线顶点的连线同避雷针的夹角小于45o)。避雷针一定要连接大地(接地电阻越小越好),通信设备电源的地线也应接地。

3.车载天线的安装
(1)安装前,先用万用表检查一下天线和同轴联接器中心的导通情况,同轴联接
器的外部和中心的绝缘情况。 (2)通信设备装车使用时,天线通常安装在车顶。对于铁壳汽车,天线通常将车
顶作为地网,装置时应充分确认连接好地线。 (3)装车使用时,电缆线可通过车梁引入车内。如由车罩的空隙引入,最好利用
发动机室的假孔;如从窗外引入,必须注意车门窗户的启闭不要损伤电缆。 (4)装车使用时,在起伏地带及城市内,特别是大城市内会发生直射电波、反射
电波、折射电波的叠加,产生多径效应,从而出现电波的衰落及分布起伏现
象。这种现象表现为通信设备收信效果的好坏,会随着通信设备位置的移动
而变化。有些地方收信很差,移动几m就可能变得很好。这时,汽车应在附
近移动一下,找到通信效果最好的位置。 (5)通信设备装车使用时,因天线高度很低,不要把车停在沿通信方向线上的障
碍物附近或高压输电线下面。
(6)当一辆车顶装多副天线时,应将其间距离尽量拉大。这样既能减少相互干扰,
又能提高天线无线电波辐射效率。 (7)利用车载天线架设简易基地台。 a.应架设地网(通常采用铁板制成)。 b.天线架设越高(例如房顶、山顶等),通信距离将增加,甚至超过额定距离。 c.如果条件许可,应将天线架设在面向通信方向的山坡上或侧面斜坡上。 d.天线架设在草房、木房或一般砖木结构房屋内,对通信能力影响较小,但
在石头或钢筋混凝土建筑物内架设天线,则影响很大。这时应尽可能将天线置于房顶层(但不要在正好有金属结构的屋顶下),或选择朝向通信方向的窗口处。
(8)当天线周围有强烈干扰(特别是汽车火花干扰等)时,应设法更换天线的架设位
置。
4.便携或袖珍式通信设备天线
(1)常用天线种类
①鞭状天线 它是便携或袖珍式通信设备最常用的一种天线,也是天线中最简
单、最基本的型式。常用的有拉杆式,接杆式和蛇骨式。
鞭状天线在水平面内是全方向性的,它在水平面内的辐射图形近似于一个以鞭状天线为中心的圆。但是,由于人体效应影响了辐射图形,形成了一定的方向性。
②螺旋天线 它与鞭状天线一样,也是便携或袖珍式通信设备常用天线之一如手
持试对讲机基本采用螺旋天线。它的最大辐射方向在垂直于螺旋轴的平面上,
即在水平面内天线为全方向性。螺旋天线与λ/4鞭状天线相比,虽然增益稍
低了一些,但是天线的长度可缩短2/3或更多,而且仍然保持“自谐振”,携带
也更方便。 (2)使用注意事项
①在通信距离不远或信号较强时,通信设备方向性一般情况下不明显,通信双
方应使天线互相背向倾斜;当不易辨别通信方向时,可将通信设备缓转,确定
一个最佳可听度方向。
②在低凹地方通信时,应使天线高出地面一定的长度,
5.通信设备天线的维护
由于天线长期在室外恶劣气候条件下使用,所以定期维护是非常必要的。应在相应的部位上定期涂漆、涂油、密封,尤其是电接触部位。如发现有氧化腐蚀现象,应及时采取措施,用以密封的橡胶零件,如发现老化开裂,应及时更换。
6.天馈系统如何防水和雷电干扰?
答:天线和馈线本身都有很好的防水、防腐蚀性能,我们所指的主要是天馈系统室外连接部位的防水和防潮湿。天线和馈电线主要是靠连接器连接,采用。另外,在馈线进入室内处弯一个反水弯,可避免雨水沿馈电线进入室内设备。
天线一般都架设在室外较高的位置,有交待防止雷电干扰和破坏,才能确保通信系统的安全工作。因此,地面设施(如铁塔、建筑物等)应有良好的接地措施,接地电阻不在于4Ω天线应架设在塔顶避雷针的有效避雷范围内,即避雷针顶部下方45°角覆面内。通信天线一般都设计成外壳直接接地型,但为防止雷电、强电感应或天气变化引起的脉冲放电对通信的冲击,还应在馈电线上串接避雷装置,使通信系统更安全的工作,我公司研制生产的LP系列串接型避雷器国内老式产品的更新换代品,已广泛用于各种天馈系统中。
7.如何检测天馈系统?
答:天馈系统架设好后,应由专业技术人员使用检测仪器进行检测。通常可在发射机和天馈系统之间串接通过式功率针,检验设备发射功率和反射功率的大小叛断系统工作是正常。
8.天馈系统有哪些典型故障?
答:天馈系统常见故障有
(1) 天线的性能、参数不能满足使用要求;
(2) 接头密封为严,使水汽进入馈线,影响信号发射;
(3) 架设位置不合理,如太靠近干扰源等;
(4) 发射机功率超过天线额定功率,使天线过载或烧毁;
(5) 遭受外物撞击,改变了天线原有结构和性能参数;
(6) 电缆头焊接不牢固,信号时有时无;
(7) 天线波束指向偏离,天线立杆或支架偏位等。
9.如何排除上述故障?
答:如遇到上述故障,可采取如下方法处理:
(1) 更换天线;
(2) 更换电缆,并严格按操作要求用防水或自粘防水胶把接头处密封好;
(3) 远干扰源,天线与架设天线的塔杆相距大于使用波长;
(4) 更换额定功率大的天线;
(5) 送回厂家修理;
(6) 重新更换电缆头,仔细焊拉防止虚焊;
(7) 调整天线指向,修复支架,重新紧固。
10.雨雷天气通信效果不佳是否是天线问题?
答:电磁波在不现媒质传播其损耗也有不同。一般来说雨雷天气的散射损耗和吸收衰减,因此,会影响接收电平,使通信区域变小、效果变差。随着天转好,通信恢复正常,则说明天线系统无问题,但如果天气晴朗后,通信效果仍不好,则应由专业人员检查该系统是否存在故障。
第四讲 移动通信系统天线参数调整
1.天线高度的调整
天线高度直接与基站的覆盖范围有关。一般来说,我们用仪器测得的信号覆盖范围受两方向因素影响: 一是天线所发直射波所能达到的最远距离; 二是到达该地点的信号强度足以为仪器所捕捉。 900MHz移动通信是近地表面视线通信,天线所发直射波所能达到的最远距离(S)直接与收发信天线的高度有关,具体关系式可简化如下:
S=2R(H+h)
其中:R-地球半径,约为6370km;H-基站天线的中心点高度;h-手机或测试仪表的天线高度。
由此可见,基站无线信号所能达到的最远距离(即基站的覆盖范围)是由天线高度决定的。 GSM网络在建设初期,站点较少,为了保证覆盖,基站天线一般架设得都较高。随着近几年移动通信的迅速发展,基站站点大量增多,在市区已经达到大约500m左右为一个站。在这种情况下,我们必须减小基站的覆盖范围,降低天线的高度,否则会严重影响我们的网络质量。其影响主要有以下几个方面:
a. 话务不均衡。基站天线过高,会造成该基站的覆盖范围过大,从而造成该基站的话务量很大,而与之相邻的基站由于覆盖较小且被该基站覆盖,话务量较小,不能发挥应有作用,导致话务不均衡。
b. 系统内干扰。基站天线过高,会造成越站无线干扰(主要包括同频干扰及邻频干扰),引起掉话、串话和有较大杂音等现象,从而导致整个无线通信网络的质量下降。
c. 孤岛效应。孤岛效应是基站覆盖性问题,当基站覆盖在大型水面或多山地区等特殊地形时,由于水面或山峰的反射,使基站在原覆盖范围不变的基础上,在很远处出现"飞地",而与之有切换关系的相邻基站却因地形的阻挡覆盖不到,这样就造成"飞地"与相邻基站之间没有切换关系,"飞地"因此成为一个孤岛,当手机占用上"飞地"覆盖区的信号时,很容易因没有切换关系而引起掉话。
2. 天线俯仰角的调整
天线俯仰角的调整是网络优化中的一个非常重要的事情。选择合适的俯仰角可以使天线至本小区边界的射线与天线至受干扰小区边界的射线之间处于天线垂直方向图中增益衰减变化最大的部分,从而使受干扰小区的同频及邻频干扰减至最小;另外,选择合适的覆盖范围,使基站实际覆盖范围与预期的设计范围相同,同时加强本覆盖区的信号强度。
在目前的移动通信网络中,由于基站的站点的增多,使得我们在设计市区基站的时候,一般要求其覆盖范围大约为500M左右,而根据移动通信天线的特性,如果不使天线有一定的俯仰角(或俯仰角偏小)的话,则基站的覆盖范围是会远
远大于500M的,如此则会造成基站实际覆盖范围比预期范围偏大,从而导致小区与小区之间交叉覆盖,相邻切换关系混乱,系统内频率干扰严重;另一方面,如果天线的俯仰角偏大,则会造成基站实际覆盖范围比预期范围偏小,导致小区之间的信号盲区或弱区,同时易导致天线方向图形状的变化(如从鸭梨形变为纺锤形),从而造成严重的系统内干扰。因此,合理设置俯仰角是保证整个移动通信网络质量的基本保证。 一般来说,俯仰角的大小可以由以下公式推算:
θ=arctg(h/R)+A/2
其中:θ--天线的俯仰角;h--天线的高度;R--小区的覆盖半径;A-天线的垂直平面半功率角 上式是将天线的主瓣方向对准小区边缘时得出的,在实际的调整工作中,一般在由此得出的俯仰角角度的基础上再加上1-2度,使信号更有效地覆盖在本小区之内。
3. 天线方位角的调整
天线方位角的调整对移动通信的网络质量非常重要。一方面,准确的方位角能保证基站的实际覆盖与所预期的相同,保证整个网络的运行质量;另一方面,依据话务量或网络存在的具体情况对方位角进行适当的调整,可以更好地优化现有的移动通信网络。
根据理想的蜂窝移动通信模型,一个小区的交界处,这样信号相对互补。与此相对应,在现行的GSM系统(主要指ERICSSON设备)中,定向站一般被分为三个小区,即:
A小区:方位角度0度,天线指向正北;
B小区:方位角度120度,天线指向东南;
C小区:方位角度240度,天线指向西南。
在GSM建设及规划中,我们一般严格按照上述的规定对天线的方位角进行安装及调整,这也是天线安装的重要标准之一,如果方位角设置与之存在偏差,则易导致基站的实际覆盖与所设计的不相符,导致基站的覆盖范围不合理,从而导致一些意想不到的同频及邻频干扰。 但在实际的GSM网络中,一方面,由于地形的原因,如大楼、高山、水面等,往往引起信号的折射或反射,从而导致实际覆盖与理想模型存在较大的出入,造成一些区域信号较强,一些区域信号较弱,这时我们可根据网络的实际情况,对所地应天线的方位角进行适当的调整,以保证信号较弱区域的信号强度,达到网络优化的目的;另一方面,由于实际存在的人口密度不同,导致各天线所对应小区的话务不均衡,这时我们可通过调整天线的方位角,达到均衡话务量的目的。 当然,在一般情况下我们并不赞成对天线的方位角进行调整,因为这样可能会造成一定程度的系统内干扰。但在某些特殊情况下,如当地紧急会议或大型公众活动等,导致某些小区话务量特别集中,这时我们可临时对天线的方位角进行调整,
以达到均衡话务,优化网络的目的;另外,针对郊区某些信号盲区或弱区,我们亦可通过调整天线的方位角达到优化网络的目的,这时我们应辅以场强测试车对周围信号进行测试,以保证网络的运行质量。
4. 天线位置的优化调整
由于后期工程、话务分布以及无线传播环境的变化,在优化中我们曾遇到一些基站很难通过天线方位角或倾角的调整达到改善局部区域覆盖,提高基站利用率。为此就需要进行基站搬迁,换句话说也就是基站重新选点过程。 下文摘录了我们平时做规划时的一些经验。 (1) 基站初始布局 基站布局主要受场强覆盖、话务密度分布和建站条件三方面因素的制约,对于一般大中城市来说,场强覆盖的制约因素已经很小,主要受话务密度分布和建站条件两个因素的制约较大。基站布局的疏密要对应于话务密度分布情况。 但是,目前对大中城市市区还作不到按街区预测话务密度,因此,对市区可按照: a. 繁华商业区; b. 宾馆、写字楼、娱乐场所集中区; c. 经济技术开发区、住宅区; d.工业区及文教区;等进行分类。 一般来说: a.b类地区应设最大配置的定向基站,如8/8/8站型,站间距在0.6~1.6km; c 类地区也应设较大配置的定向基站,如6/6/6站型或4/4/4站型,基站站间距取1.6~3km; d 类地区一般可设小规模定向基站,如2/2/2站型,站间距为3~5km;若基站位于城市边缘或近郊区,且站间距在5km以上,可设以全向基站。 上几类地区内都按用户均匀分布要求设站。郊县和主要公路、铁路覆盖一般可设全向或二小区基站,站间距离5km-20km左右。 结合当地地形和城市发展规划进行基站布局: a. 基站布局要结合城市发展规划,可以适度超前; b. 有重要用户的地方应有基站覆盖; c. 市内话务量"热点"地段增设微蜂窝站或增加载频配置; d. 大型商场宾馆、地铁、地下商场、体育场馆如有必要用微蜂窝或室内分布解决; e.在基站容量饱和前,可考虑采用GSM900/1800双频解决方案。 (2) 站址选择与勘察 在完成基站初始布局以后,网络规划工程师要与建设单位以及相关工程设计单位一起,根据站点布局图进行站址的选择与勘察。市区站址在初选中应作到房主基本同意用作基站。初选完成之后,由网络规划工程师、工程设计单位与建设单位进行现场查勘,确定站址条件是否满足建站要求,并确定站址方案,最后由建设单位与房主落实站址。选址要求如下: a.交通方便、市电可靠、环境安全及占地面积小。 b.在建网初期设站较少时,选择的站址应保证重要用户和用户密度大的市区有
良好的覆盖。
c.影响基站布局的前提下,应尽量选择现有电信枢纽楼、邮电局或微波站作为站址,并利用其机房、电源及铁塔等设施。
d.在大功率无线发射台附近设站,如雷达站、电视台等,如要设站应核实是否存在相互干扰,并采取措施防止相互干扰。
e.在高山上设站。高山站干扰范围大,影响频率复用。在农村高山设站往往对处于小盆地的乡镇覆盖不好。
f.在树林中设站。如要设站,应保持天线高于树顶。
g.基站中,对于蜂窝区(R=1~3km)基站宜选高于建筑物平均高度但低于最高建筑物的楼房作为站址,对于微蜂窝区基站则选低于建筑物平均高度的楼房设站且四周建筑物屏蔽较好。
h.基站应避免天线前方近处有高大楼房而造成障碍或反射后干扰其后方的同频基站。
i.选择今后可能有新建筑物影响覆盖区或同频干扰的站址。
j.两个网络系统的基站尽量共址或靠近选址。
k.选择机房改造费低、租金少的楼房作为站址。如有可能应选择本部门的局、站机房、办公楼作

销售客服

全国统一服务热线
400-698-7080

公司电话
0871-67172585

公司传真
0871-67012585

服装招标 消防招标 家具招标 医疗招标 安防招标 公安警察招标 交通公路招标 环保招标 园林绿化招标 电梯招标 机电设备招标 水利招标